Approximate and Transprecision Computing on Emerging Technologies (ATCET)


Dr Cristiano Malossi
Prof. Luca Benini
Prof. Norbert Wehn
Prof. Roger Woods
Dr Andrew Emerson

Approximate and Transprecision Computing on Emerging Technologies (ATCET) 2nd Edition

In the last 10 years, the demand for new computing strategies driven by energy-efficiency has grown exponentially. Flop-per-watt (thus, per-euro) has become de-facto a driving model in hardware design. Results in this direction have been significant, leveraging first multi-core parallelism and then recently moving toward heterogeneous architectures (e.g., multicore CPU coupled with GP-GPUs). However, these evolutions will not be sufficient in the long term. To maintain an exponential increase in computational efficiency, we will need to rely either on an unlikely breakthrough discovery in hardware technology, or on a fundamental change in computing paradigms.

This workshop is dedicated to experts who explore approximation in hardware and software from both a statistical and a deterministic viewpoint, as a computing paradigm shift to break the current performance and energy-efficiency barriers of systems at all scales, from sensors to supercomputers. Approximate computing is a viable method for building more efficient, scalable and sustainable systems. However, it also places formidable challenges across the entire computing software and hardware stack. Addressing these challenges requires balanced expertise in mathematics, algorithms, software, architecture design and emerging computing platforms. The objective of this workshop is to bring together experts across these areas to present the latest findings and discuss future opportunities for approximate computing. In more detail, the workshop will cover the following areas:

  1. Approximate and transprecision computing: from the physical limits to the architecture and circuit design; from the algorithm design to the error analysis; from innovative technology to real applications.
  2. Programming abstractions: from structured and disciplined approximation in computation, communication and data transfers, to quality control and techniques to recover from over-approximation.
  3. Computing platforms: from tiny low-power devices for IoT applications, up to classical HPC systems embedding imprecise massively parallel accelerator.
  4. Applications: examples from data analytics, machine learning, deep learning, and scientific computing, where uncompromised quality with scalable order-of-magnitude time- and energy-to-solution reduction is reachable relying on approximation for a significant amount of calculations.

Key Topics

The workshop will cover the following key topics:

  • Beyond Moore’s law
  • Future challenges for programming models and languages
  • Exascale Systems

The workshop provides an opportunity to have in-depth discussions, presentations, and interactions on these topics. This will promote future collaborations and better coordination around the development on approximate and transprecision computing techniques.

Expected Outcomes

  • Promote research and development in approximate and transprecision computing
  • Align developments in algorithms, software, and hardware design towards unified and successful platforms for approximate and transprecision computing
  • Foster a common discussion across multiple disciplines
  • Raise energy-awareness in the big data community as well as in HPC
  • Promote collaboration between academia, industry and SMEs
  • Strengthen the community in energy efficient computing


The workshop will be held in the morning of June 25th, between 9:00 and 13:00.

The full agenda is detailed in the following table.

Time Type of Talk Authors Title
09:00 09:10 Opening / Introduction
09:10 10:00 Keynote Talk
10:00 10:30 Contributed Talk 1
10:30 11:00 Contributed Talk 2
11:00 11:30 Coffee break
11:30 12:00 Contributed Talk 3
12:00 12:30 Contributed Talk 4
12:30 13:00 Contributed Talk 5


Special Issue

Authors of best papers will be invited to submit an extended version of the paper in a journal to be determined.

Organising Committee and Contacts

Cristiano Malossi
IBM Research GmbH
Zürich, Switzerland
Prof. Luca Benini
ETH Zürich
Prof. Norbert Wehn
Dr. Andrew Emerson

Program Committee Members